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ONE-PHOTON SPECTROSCOPY OF 
VIBRATION-ROTATIONAL STATES OF DIATOMIC 

MOLECULES 
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PO Box 4 ,  Canberra, ACT 2600, Australia 

AND 

R. H. TIPPINGt 

Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford M A  01731, USA 

ABSTRACT 

In this review (containing 185 references) we discuss the vibration-rotational 
spectroscopy arising from one-photon electric-dipole moment transitions of 
diatomic molecules in the 'I: state. After a brief survey of the physical effects 
underlying the interaction of two atoms, we invoke the customary 
Born-Oppenheimer separation of electronic and nuclear motions in the molecule 
and introduce the concept of the potential-energy function. We discuss several 
model functions for the potential energy and their relationship to a general power- 
series representation, first treated by Dunham, that provides the framework for the 
analysis of accurate experimental data on transition frequencies. The WKB method 
of obtaining the term values of energy as functions of the Dunham potential-energy 
coefficients is described in detail and new results generated by computer algebra are 
presented. An analytic algorithm for obtaining the wavefunctions corresponding to 
the Dunham potential-energy function is reviewed and extended. One can use these 
wavefunctions to derive expressions for expectation values and matrix elements of 
powers of the reduced displacement from equilibrium; we also discuss several 
alternative methods, not involving the wavefunctions directly. The use of these 
matrix elements in the extraction of the dipole-moment function from experimental 
data on spectral intensities is illustrated by explicit calculations for HCl. In the final 
section we consider deviations from the Born-Oppenheimer approximation for 
both the potential-energy and dipole-moment functions, as well as other limitations 
of the Dunham formalism. Finally we mention briefly some recent trends and 
developments that we expect to become increasingly important as experimental 
sophistication advances. 

INTRODUCTION 

The infrared spectra of a gas containing diatomic molecules can yield much 
information about the mechanical and electrical properties of the individual molecules. 
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4 One-photon spectroscopy 

The mechanical properties are conventionally discussed in terms of a potential-energy 
function, whereas the electrical properties may be analogously described quantitatively 
by means of a dipole-moment function. Our objective in this review is to indicate how a 
spectroscopic analysis leads to determination of these molecular properties, as well as 
to suggest some trends in the progress of this kind of investigation. Many of the basic 
applications and implications of this information in chemistry and physics have been 
outlined by Herzberg (1950, Chapter 8); the increase of the knowledge of these 
properties since publication of that monograph has permitted an extension of both the 
qualitative (i.e., detection and characterization) and quantitative analysis of such 
molecules occurring in planetary atmospheres (including the terrestrial one), 
interstellar clouds, etc., as a result of either natural processes or human activities (such 
as industrial pollution). 

In this review, we consider the interaction of polar molecules with electromagnetic 
radiation; specifically, we restrict our attention to molecules consisting of only two 
nuclei and the associated electrons interacting with a single photon. We omit 
discussion of processes involving multiple photons (Crunwald et a/.., 1978; Halpern et 
al., 1980), absorption induced by electric fields (Condon, 1932; Brannon et al., 1968), or 
scattering of light (e.g., Raman spectroscopy) that can be formally regarded as a two- 
photon process (Weber, 1979). Some of our results may, however, be applicable in the 
analysis of these phenomena. Our discussions apply strictly only to free molecules; thus 
we do not treat collision-induced absorption (Poll, 1980), effects of collisional 
interference (Tipping et a/., 1978; Herman et al., 1979), or pressure effects such as 
collisional broadening and shifting of spectral lines (De Pristo and Rabitz, 1980; 
Breene, 1981). Instead we assume that each molecule exists for a sufficient interval of 
time in discrete quantum states that we can specify by rotational, vibrational and 
electronic quantum numbers. Furthermore, we restrict our discussion to transitions in 
which the electronic quantum numbers do not change; thus we consider only pure 
rotational and vibration-rotational transitions. Although one can obtain vibrat- 
ion-rotational spectra of transitions within excited electronic states, almost all 
experimental data (Herzberg, 1950; Huber and Herzberg, 1979) pertain to the ground 
state. Furthermore, as most stable molecules have 'C ground states (two important 
exceptions being NO and 02), our results apply specifically to this electronic state; the 
extension to other electronic states can, however, be made, usually by straightforward 
generalizations (Gordy and Cook, 1970). Finally, although we recognize that each 
nucleus may possess intrinsic angular momentum, specified by a quantum number for 
nuclear spin, we consider only transitions induced by the electric-dipole component of 
the electromagnetic field ; thus we exclude nuclear magnetic resonance effects (Jackman 
and Cotton, 1975; Slichter, 1980), magnetic dipole transitions (Carstang, 1962; 
Mizushima, 1975), and electric multipolar transitions of higher order (Buckingham, 
1981; Carny-Peyret et al., 1981; Reid et al., 1981). Again, some of our results, such as 
matrix elements, are useful in these other fields. 

Although these circumscriptions defining the scope of our review may seem 
restrictive, there nevertheless exist abundant data from the vibration-rotational 
spectra of diatomic molecules in their 'C states (Barrow et a/., 1979; Huber and 
Herzberg, 1979). The experimental data consist primarily of transition frequencies and 
intensities, and our purpose is to relate these data to the internuclear potential-energy 
function and to the electric dipole-moment function of the molecule. As limitations of 
space preclude a detailed description of the importance and utility of this kind of 
spectral information, we refer the interested reader to other sources for discussion of 
these topics (Penner, 1959; Rao and Mathews, 1972; Rao, 1976; Barnes and Orville- 
Thomas, 1977). 
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J. F. OGILVIE AND R. H. TIPPING 5 

We have organized the review as follows. In the next section, we discuss the potential- 
energy function. Although many model functions have been proposed, most precise 
measurements have been interpreted according to the formalism developed by 
Dunham (1932b); hence we discuss this theory in detail. In the third section, we review 
the WKB method (Froman and Froman, 1965) for obtaining the energies of discrete 
vibration-rotational states for the Dunham form of the potential energy; we present 
extensive new results, obtained by methods of computer algebra (Bryukhanov et al., 
1980, Howard, 1980; Ogilvie, 1982), that one can use in order to interpret data from 
recent high-resolution experiments (Dale et al., 1979; Celfand et al., 1981 ; Cuelachvili 
et al., 1981). In the fourth section we discuss briefly the wavefunctions (Herman et al., 
1970) corresponding to the vibration-rotational states; these functions may be used in 
obtaining analytic expectation values and matrix elements of various powers of the 
displacement from equilibrium. The latter integrals, discussed in the fifth section, 
enable one to analyse measurements of intensities of spectral lines and bands, and to 
relate these quantities to parameters of the potential-energy and electric dipole- 
moment functions. Again we present some new results; a more comprehensive 
compilation will be published separately (Tipping and Ogilvie, 1983). These results are 
used in the sixth section in an analysis of extensive data for intensities of a specific 
molecule, HCI. This analysis demonstrates not only the accuracy of the results 
presented in preceding sections but also some of their limitations. In the final section we 
discuss some fundamental limitations of the Dunham formalism, such as the 
Born-Oppenheimer (1 927) approximation, the radius of convergence of the Dunham 
function for potential energy, etc. We indicate briefly some recent refinements in these 
topics that will become increasingly important as experimental techniques improve. 
Some speculation concerning future developments, both theoretical and experimental, 
concludes this review. 

POTENTIAL-ENERGY FUNCTIONS 

By means of neutron-diffraction experiments, it is possible to locate (within the unit 
cells of suitable crystalline samples) the time-averaged positions of individual nuclei, 
with an uncertainty small compared with typical equilibrium internuclear separations. 
Other diffraction experiments demonstrate that these positions practically coincide, 
except possibly for hydrides (Coulson and Thomas, 1971), with local maxima of 
electronic density, but it has not been possible to locate individual electrons in the same 
way, because of the relatively small mass of these particles. The theoretical formulation 
of this observation is the Born-Oppenheimer (1927) separation of electronic and 
nuclear motions (Born and Huang, 1954; Herman and Asgharian, 1966), according to 
which the total energy of the molecule, with the positions of nuclei fixed in space, 
becomes to a good approximation a potential energy for the vibrational motion of these 
nuclei. Although this general concept of molecular structure has been criticized 
(Woolley, 1976), a defence of it rapidly ensued, from both the theoretical (Essen, 1977) 
and empirical (Wilson, 1979) points of view. In any case the applicability to diatomic 
molecules was not doubted (Woolley and Sutcliffe, 1977). Further discussion of the 
implications of the Born-Oppenheimer approximation appears in the final section of 
this review. 

The potential energy in which the nuclei move is called the potential-energy function 
V (  R ) ,  which for diatomic molecules depends parametrically on the internuclear 
separation R. The form of this potential-energy function, excluding any effects of 
molecular rotation, is illustrated in Figure 1 for the molecule CO (Ogilvie, 1981). There 
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6 One-photon spectroscopy 

x 'z 

stable separated 
molecule atoms 

1 0 - l ~  1 0 - l ~  lo-" I O - ~  hrn - 
FIG. 1. Qualitative representation of the potential energy of CO as a function of 
internuclear separation between the limits of united atom and separated atoms. 

Note that the ordinate scale is discontinuous. 

are evident three distinct regions in the figure: 

1. The limit for separated atoms at  large R .  
2. The united atom at small R .  
3. The intermediate region about the secondary energy minimum (at R e )  correspond- 

ing to a stable molecule. 

For all electrically neutral diatomic molecules, or pairs of neutral atoms in the 
dissociation limit, the potential-energy function has a similar form, except that in some 
cases (such as 'H,) the nucleus of the united atom may be unstable, implying an energy 
maximum as R+O. We hereafter neglect that portion of the potential-energy function 
at separations much less than Re where the energy is not accessible by conventional 
molecular spectroscopy. However, information about the steeply repulsive curve at 
R 6 Re from atomic scattering experiments or spectroscopic continua may be 
incorporated into the potential-energy function. 

As two neutral atoms approach each other, one can envisage several physical effects 
(Hirschfelder, 1967a; Margenau and Kestner, 1971) that contribute to the potential- 
energy function. At large separations R % Re, but not so large that retardation effects 
are important, dispersion forces produce a net attraction proportional to - R - 6  ; this is 
a quantum mechanical effect that may crudely be attributed to an interaction between 
an instantaneous dipole in one atom and the dipole induced in the other atom. There 
are also higher multipolar interactions (Hirschfelder et al., 1964), for instance due to the 
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J. F. OGILVIE AND R. H. TIPPING 7 

quadrupole, that have a dependence on - R-*, - R- lo , etc. There are also small 
contributions proportional to - R - 3  and - R-4 at R >  Re, attributed to quantum 
electrodynamic effects (Hirschfelder, 1967b). Further discussion of long-range 
interactions is given by Le Roy (1973). 

A more important effect for strongly polar molecules, those with dipole moments 
greater than about 6 x C m*, may be interpreted in terms of a partial transfer of 
charge; from Coulomb’s law the potential energy thus varies as - R- in a region 
Re < R < R,, approaching the limit of ionic products of dissociation. Because this limit 
is of greater energy (for all known diatomic molecules in the ground electronic state) 
than the limit corresponding to dissociation into neutral atoms, the curve of actual 
potential energy may be considered to undergo an avoided crossing near some point 
R,. The separation R, at the intersection of the curve for the ionic state with the 
asymptote of the curve for the dissociation into neutral products may be estimated 
according to the relation (in SI units): 

R,/metre=2.3 x 10-28/[(E,-E,)/joule]; (1) 
E ,  and E ,  are respectively the first ionization energies of the anion and the other atom 
(Hildenbrand, 1967). This relation for R, underestimates the actual distance R, of the 
avoided crossing by about 15 per cent in the case of some alkali hydride molecules 
(Yang and Stwalley, 1982). 

Apart from these classical electrostatic interactions, there are quantum-mechanical 
exchange effects that produce an attraction, varying as - eFaR; the corresponding term 
in the so-called ‘Coulomb integral’ leads to repulsion, varying as +e-zuR,  in the 
treatment of H: or H, by Heitler and London (Pauling and Wilson, 1935). In more 
complicated molecules there are also combinations of such exponential functions and 
their products with polynomials in R. 

In the case of some pairs of neutral atoms, each with ‘ S  ground states (like Be, or 
NeAr), the binding energy Qe may be relatively small, and the corresponding 
equilibrium separation relatively large, by comparison with those values for CO in 
Figure 1. It remains true, however, that dispersion forces invariably cause a net 
attraction between the neutral atoms at large distances. If, however, both of the 
separated atoms carry a net charge of the same sign, then a Coulomb repulsion 
operates at all meaningful separations, and an energy maximum may occur in the 
region R > Re. Similar complications may be applicable if one separated atom (or both) 
is in an excited electronic state; then phenomena such as double minima of the 
potential-energy function can result at intermediate separations. 

It is evident that any attempt to represent such varied behaviour by a potential- 
energy function of relatively simple analytic form must prove unsuccessful. 
Nevertheless, many empirical model functions have been proposed (Varshni, 1957; 
Steele et al., 1962; Torrens, 1972; Goodisman, 1973) in order to interpret results in 
molecular spectroscopy and various other investigations of molecular structure and 
interactions. Most of these functions have been of the types of inverse powers, R-”, or 
exponential functions, eCR, or some combination thereof. One early function still in use 
is that due to Lennard-Jones (1924, 1925). 

v(R) = geC(Re/R)” -2(Re/R161 (2) 
We can conveniently express this function in terms of a reduced variable x for 
internuclear separation, x = (R - RJR,; furthermore, if we choose the zero of the 

* 3.33564 x C m = 1 Debye. 
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8 One-photon spectroscopy 

energy scale to correspond to the minimum at R =Re,  we obtain 

V(x)  = Qe[ 1 - 1/( 1 + x ) ” 2 .  (3) 
This form can be made more general by replacement of the power 6 by a parameter n, in 
order that one can generate a series of functions having attractive ( -R-”)  and 
repulsive (+ R-’“) contributions. The special case n = 1, known as the Kratzer (1920) 
potential-energy function, was one of the first to be solved according to wave mechanics 
(Fues, 1926). Another function admitting an exact solution of the Schrodinger equation 
is of the exponential type, due to Morse (1929): 

V(x) = ge (1 - e-aMx)2 (4) 

More complicated functions, containing more free parameters, are being continually 
proposed (e.g., Thakkar, 1975; Huffaker, 1976). 

All these specified functions are anharmonic in the sense that classically the 
frequency of oscillation depends on the amplitude, and another common property is 
that the dissociation energy ( x - +  00) is finite. Furthermore the quantum-mechanical 
eigen-energies merge, as the energy increases towards the dissociation limit. In contrast, 
for a classical harmonic oscillator, the frequency is independent of the amplitude, or 
quantum-mechanically the energy difference between adjacent eigenstates is constant, 
inconsistent with a finite energy of dissociation. In general the number of harmonic 
potential -energy functions is uncountable (Nieto, 1981), but one of these, the canonical 
harmonic oscillator, has a particularly simple form, V ( x )  = u,x2. Although this 
parabolic dependence is obviously a poor approximation to the potential-energy 
function of a real molecule, such as CO in Figure 1,  this form may be taken as a limiting 
case for infinitesimal vibrations about x = 0. Anharmonic terms can be incorporated 
within an expansion as a power series. The function due to Dunham (1932b) has this 
form: 

V ( x )  = U o X 2 (  1 + c U j X j )  

j =  1 

Because of the variable number of coefficients aj available as parameters to be fitted for 
a particular molecule, this function is quite flexible, and can thus represent the actual 
potential-energy function accurately within some limited range of internuclear 
separation about R =Re or x = 0; this is just the range in which the Born-Oppenheimer 
approximation is most valid (Longuet-Higgins, 1961). 

The general inverse-power function and the Morse function are useful approxi- 
mations for real molecules, if experimental data are sparse, because they display 
qualitatively correct behaviour over the entire range of internuclear separation and 
have the correct dissociation limit. One can convert these functions into the Dunham 
form by finding algebraic relations of the potential-energy coefficients aj to the 
parameters of the other functions (Tipping and Ogilvie, 1976). For the general inverse- 
power function. 

V(x)=9Jl- 1/(1 + x y y  (6) 

the coefficients are: 
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J. F. OGILVIE AND R. H. TIPPING 

Some particular cases are, for j > 0, 

n= 1 : aj = (-  lY’(j+ 1) 

n = 3: u,= ( - ly(j + 1) (j + 3) (j +4) (j2 + 17j + 9O)/1080 

n=6: ~ j =  ( -  lY(j + 1) (j + 3) (j +4) (j + 5) (j +6) (j +7)  (j+20) 

(j4+42j3 +743j2 +6342j+28512)/3(12!) 

For the Morse function, we have similarly: a, = &De; 

aj= (2j+2 -2) (-a,Y’/(j+ 2)!, j >  0 (9) 
One can also convert into the Dunham form any other analytic and continuous 
function V(R) for the potential energy of an electronic state having a minimum of 
energy at R = R e  by finding derivatives of the function at R =Re:  

a, = +R:[dZ I/(R)/~R’]R=R,; 

aj= (2R’,) [dj” T/(R)/dRj+2]~= ~,/(j + 2)! [dZ I / (R) /dRZ]~=~,  j >  0 (10) 
As we show in the following section, one can determine the eigen-energies for the 
function in equation ( 5 )  in terms of the potential-energy coefficients ai Thus by 
transforming another function into the Dunham form, one can find the approximate 
eigen-energies of other potential-energy functions. 

There are several procedures by which one can determine the potential-energy 
function from an experimental spectrum of any particular molecule. A typical spectrum 
generally consists of several different bands (denoted by vibrational quantum numbers 
of initial and final states) each of which is composed of numerous lines (similarly 
denoted by rotational quantum numbers). Additional information may be available 
from spectra of isotopic species of the same substance. For instance, the spectra of 
gaseous hydrogen chloride commonly consist of lines due to 1H35Cl and ‘HJ7Cl; less 
common isotopic molecules such as *HJ5Cl, ’H3’CI, 3H35C1, etc. can be detected after 
suitable chemical preparation. For HCl, about 1200 lines in total have been measured 
with at least moderate precision for the pure rotational and the vibration-rotational 
transitions of all these isotopic variants. If, for each vibration-rotational band, we fit 
the line wavenumbers to a set of band parameters, in particular the band origin vo, the 
rotational (BL, B’J and centrifugal distortion (DL, DF, etc.) parameters of the upper and 
lower vibrational states (Herzberg, 1950), then we generate values of - 260 parameters; 
these may include redundant values of the same rotational parameters B,, D, obtained 
from different vibrational transitions having one state in common. We can further 
reduce these band parameters for ‘C states according to the term values E(u, J )  for each 
isotopic species i by using a double summation over vibrational u and rotational 
(angular momentum) J quantum numbers: 

E’(u, J )  = c 1 Yi,(U + # [ J ( J  + l)],, 
k = O  1=0 

in which the energy coefficients YiI may at this stage be regarded as fitting parameters. 
By this means we can decrease the number of parameters from - 260 to - 50. As is 
discussed in the last section, the energy coefficients YLI are dependent on the various 
masses, according to (Ross et al., 1974): 

YiI=p;(k+21)’2 UkI[l +m,(A,”,/M, +A!,/Mb)]; (12) 
in this equation the VkI quantities and A,“ib parameters are isotopically invariant; the 
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10 One-photon spectroscopy 

mass of the electron is me, and the reduced mass pi of each isotopic molecule i is related 
to the atomic masses Ma and Mb according to 

pi= M a M b / ( M a +  Mb).  (13) 
By this means one can decrease the total number of parameters from - 50 to - 25 
(Coxon and Ogilvie, 1982): the quantities U,, and Aiib (because only a few of the 
possible Aikajb values can be determined with statistical significance). 

The term-value equation (1 1) may be transformedto 

E'(v, J )  = c c U : , [ 1 1 - " 2 ( v + ~ ) ] k [ ~ - 1 ( J Z + J ) ] l  
k = O  1=0 

in which the U;, quantities still contain a small mass dependence: 

however, almost all the mass dependence has been incorporated into the quantities 
p- ' l z (u+$)  and p - ' [ J ( J +  l)] that can be regarded as mass-reduced quantum 
numbers (Stwalley, 1975). 

So far, the analysis of the wavenumbers of the spectral lines has proceeded entirely 
empirically, without recourse to any physical model, but merely dependent on 
ascribing quantum numbers to discrete states and assuming a convergent representa- 
tion of the term values (Niay et al., 1977). This fitting procedure is useful and rapidly 
convergent provided that the states involved are neither perturbed nor near the 
dissociation limit. 

Using the concept of a suitable potential-energy function, one can then find 
relationships between the parameters of this function and the energy coefficients U,, or 
Yk[ such that the number of parameters required to reproduce accurately the 
wavenumbers of measured spectral lines can be still further decreased. Consequently 
one is able to ascribe some physical meaning to the U,, or Yk, quantities expressed in 
terms of the potential-energy coefficients and Re. Furthermore one can test the internal 
consistency of the over-determined set of U,, or Ykl. One also achieves a predictive 
capacity both for further (undetermined) Y,, of the same isotopic molecule and for 
wavenumbers of lines corresponding to unobserved transitions of a different isotopic 
variant; such predicted transitions, to have an accuracy commensurate with that of 
measured transitions, should lie within the range of energy for which the potential- 
energy function has been experimentally defined. These results have been realized in the 
case of HCl, for which 17 molecular parameters suffice to reproduce the wavenumbers 
of 1200 lines of the various isotopic species within the range of energy up to 0.52 of the 
dissociation limit (Coxon and Ogilvie, 1982); the values are presented in Table 1. 

Three slightly different approaches have been applied for determining an analytic 
potential-energy function from experimental data (wavenumbers of transitions), with 
full monitoring of statistical significance : 

1. Through the band parameters (B", D,, etc.) to the Ykl and thence to the coefficients uj 

2. Through the U k [  without direct use of the band parameters (by means of a merge 

3. Directly from the line wavenumbers to the coefficients uj (Niay et ul., 1977). 

All three approaches should yield equivalent results if carried out with proper 
statistical techniques. 

Before completing this section on potential-energy functions, we mention an 

(Ogilvie and Koo, 1976). 

procedure; Coxon and Ogilvie, 1982). 
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J. F. OGILVIE AND R. H. TIPPING 11 

TABLE 1. Molecular parameters of HCl 
(Coxon and Ogilvie, 1982) 

R , = 1 . 2 7 4 6 0 8 4 ~ 1 0 - ~ ~ f 1 . 5 ~ 1 0 ~ ' ~  rn 
a,=2.111393 x lO'f56 m-' 
a, = - 2.3633725 f 3.5 x lo-' 
a2=3.6605756f 1.9 x 
a3 = -4.74921 +0.0013 
a4 = 5.4529 k0.0099 
as=  -5.516k0.032 
a6 = 4.284 & 0.13 
a,= -1.726kO.42 
a8 = - 0.0267 f 0.39 

A70 = - 0.06382 f 0.00088 
A:!, =0.1280f0.016 
AYO = -0.3824k0.017 
A t l  = 0.1320 f 0.0007 

AY1 =0.462+0.019 
A& = 0.74 k 0.04 

ACl o1 - - -0.250f0.017 

alternative, purely ,numerical method for constructing potential-energy curves from 
experimental data. This procedure, due to Rydberg (1931,1933), Klein (1932) and Rees 
(1947) and referred to as the RKR method, uses the spectral data E(u, J =0) and B, and 
two auxiliary integrals in order to compute the inner and outer turning points of the 
nuclear motion. These points can then be fitted by a suitable interpolation scheme, for 
instance a spline function, in order to generate a potential-energy curve. This procedure 
is in principle no more accurate than the analytic Dunham treatment (Jarmain, 1960; 
Hurley, 1962; Davies and Vanderslice, 1966a,b), and is not considered explicitly in this 
review. 

THE WKB METHOD AND DISCRETE ENERGIES 

For diatomic molecules in 'C states, we can factor the wavefunction "(I?) describing 
the nuclear motion (within the Born-Oppenheimer approximation) into a radial part 
@ ( R )  and an angular part: 

y (R?  e, 4 ) = @ ( R ) Y J M J ( e ,  4) (16) 
in which Y,, is the usual spherical harmonic function (Rose, 1957). Making the 
traditional su6stitutions, 

and 

we find that the function $(x) satisfies the radial Schrodinger equation 

in which ,uN is the reduced nuclear mass. We first consider the case of no rotation 
(J  = 0);  later we generalize our results to include the rotational effects. 
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12 One-photon spectroscopy 

One can determine the discrete energies, E, E E(u, J = O ) ,  for the vibrational problem 

1 d2+,!x) + - [& - V(X)]$”(X) =o 
dx Be 

(in which E,, V(x) and Be = h/8n2pNcR; are all expressed in wavenumber units), via the 
WKB* (or quasi-classical or semi-classical) method without solving explicitly for the 
eigenfunctions. Briefly, in this method we assume a solution of the form 

$,(x) = exp(i/h y(x’, E, h)dx’) 

in which y(x‘, E ,  h) is represented by its asymptotic series 

and substituted into equation (20); hereafter we ignore the formal distinction between 
x’ and x. Equating powers of h, we find 

YO = k h[(E - V(x))/Be1 l” (23) 
and the recursion formula for the y coefficients: 

These are expressed in terms of V(x) and its derivatives with respect to x. We then 
determine the eigen-energies from the quantization condition 

Y ~ ( x ,  E,) dx + 1 (h/i)” y&, E,) dx = 2nh(~  + 4) (25) P s = 2  P 
in which the domain of x is the complex plane cut along the real axis between the 
classical turning points; the integration is along a contour, not crossing the cut, and 
contains only the singularities at the turning points. Kesarwani and Varshni (1980a, 
b, 1982) have given explicit results for the first six non-vanishing integrals; although 
further integrals could easily be derived, these are not warranted for the spectroscopic 
applications in which we are interested, because of the limited accuracy of the 
experimental data, the approximate nature of the Born-Oppenheimer separation and 
the neglect of relativistic effects (Tipping and Herman, 1966). Using equation (25), one 
can determine the vibrational energies implicitly through the formula, 

f(Eu - V(x))’/’ dx - Be V”(E,  - V(X))-’ /~ d ~ / 2 ~  - B: [49V4 

f i P 
- 16VV”(E,- V(X))~]  ( E , -  V ( X ) ) - ’ ~ ’ ~  dx/2”-BZ [1675V6 

(E,- V(x))- 17” +40201/’4V”(E,- V(x))-”/’ +48(20V’3V” 

+49V2 V 2 )  ( E ,  - V(X))- 13” +64( 18 V ’ V V ’ -  V 3 )  ( E ,  - V(X))- 

+ 128 I/rrr2(EU - V(X))- 9’2] dx/2 l6  = 2nB:”(~ + f )  (26) 
* There is considerable controversy regarding the nomenclature of this method; some authors 

prefer WKBJ (Kesarwani and Varshni, 1980a.b). JWKB (Froman and Froman, 1965) or WBK 
iBeckel, 1964) In conformity with Dunham”s (1932a) pioneering work, we use the notation 
WKB. 
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J .  F. OGILVIE AND R. H. TIPPING 13 

in which V‘rdV(x)/dx, etc. Following Dunham (1932b), we rewrite the potential 
energy of equation (5) in the form 

in which a, = Be/y2, and y =2Be/o, plays the role of a dimensionless expansion 
parameter, having values typically within the range 10-2-10-3. The contour 
integrations can be carried out by a direct but tedious evaluation of the residues. 

To simplify this procedure and to avoid the possibility of errors, we have used 
programs in computer algebra to carry out the operations analytically (Ogilvie, 1982). 
Expressing the results in the Dunham form 

we have determined all contributions to the Yk,, expressions up to, and including, terms 
of order ato (a,a,, a;, a,,, etc.). For most applications, only results up to a: are 
required, and these have been published. The set of Yk,, with k <4  was first given by 
Dunham (1932b), with the exception of the a: contribution to Yo,, given implicitly by 
Sandeman (1940) and explicitly by Bouanich (1978a). The extended set of Yk,, 
coefficients will be published elsewhere (Tipping and Ogilvie, 1983). 

These results can easily be compared with results from other common potential- 
energy functions, such as that of Morse, equation (4). By substituting the results in 
equation (9) into the expressions for Yk,, we find: 

Yl ,o =we and Y2,,  = -Be&; (29) 

all the other Yk,o vanish in agreement with the known result (Morse, 1929; ter Haar, 
1946). This substitution procedure is a convenient algorithm for checking the 
expressions and for guarding against transcription errors. 

Returning to the solution of equation (19), we incorporate the rotational effects in a 
formal way following the method outlined by Dunham (1932b). First we expand the 
rotational term in the potential-energy function, with [ J ( J  + l)] denoted by P: 

j=  1 

=p-2px + (7-2 + 3p)xz + ( y - Z a ,  -4P)X3 + . . . 
+ ( Y - ~ U , ,  + (- l)”(n + 3)P)x”” + * .  * (30) 

Then we eliminate the linear term (- 2Px) by a coordinate translation: 

x = XJ + 4 P L  (31) 

in which the new P-dependent variable xJ represents the reduced displacement from the 
minimum of the effective potential energy: i.e., 

By reverting the series obtained from equation (32) one can write 
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14 One-photon spectroscopy 

the coefficients hi through terms in a; are listed in Table 2.* Using equations (31) and 
(33), we then rewrite the effective potential-energy function, apart from a constant term, 
in the Dunham form: 

for which the leading terms of the P-dependent coefficients are presented in Table 3. 
Finally, the vibration-rotational eigen-energies E(v, J )  are given by 

w, J )  = E”(P) + Y- ‘B,fO(P) = 1 1 YkI(U + f Y C J ( J  + 1 )I1; (35) 
k = O  I = O  

the expressions for Yo,[ are obtained from fo(P), and the other Y,, (I> 0) from the 
corresponding Yk,Q on substitution of@) and aj(P). The new results with terms up to uy 
are presented in Table 4 .  We note that the other Ykl not given in Table 4 agree with the 
previously published expressions (Dunham, 1932b; Sandeman, 1940; Woolley, 1962, 
1972; Bouanich, 1978a) except for that of Y3,’ given by Woolley (1962) which was 
incorrect. The complete set of results including terms up to order u:” will be published 
elsewhere. 

As an independent check on these results for Ykl, one can consider the analogous 
results for a simpler potential-energy function (including rotation) that can be solved 
exactly, namely the Fues (1926) function: 

(36) 

E(u, J ) = B , y - ’ { l -  1/[1 + ~ Y ( v  +$) (1 + y 2 ( J  ++)’)”’ + y 2 ( ( v  +*)’ + ( J  +f)’)]) (37) 

V ( X )  = 9J 1 - 1/( 1 + x)]’ + BJ/(  1 + x ) ~  

The vibration-rotational energies associated with this function are (Fues, 1926): 

Expanding this result for low vibrational and rotational levels (y’(u + 4)’ and 
y z ( J  + 5)’ < l), we obtain simple expressions for the K, coefficients, listed in Table 5 as 
an extension of Sandeman’s (1940) results. We obtained identical results by 
substituting the relations for the u j  coefficients in equation (8) into our GI formulae. 
Again this procedure provides a convenient test of the more general Dunham results in 

TABLE 5. Values of Ykl for the potential-energy function of 
Fues 

Y1 .0 =we - 3yzw,/8 
Y i , i =  -3~’0,/2+ 15y4w,/16 
Yi ,2 = 15y40,/8 - 105y6w,/64 
Yl,3 = - 35y6w,/16 
Y1.4=315ysw,/128 
Yl,5 = ~ 693y100,/256 
Yl,6 =3OO3y1’w$1024 
Yz,O = - 3yw,/2 + 3y3we/4 
Y*.l =3Y3% 

Y2,3=6y 0, 

Y3,0 = 2pwe 
Y3.1 = - 5y4w, 

Y4.0 = - 5y3we/2 

Yz,z= -S)Y5We/2 

Y2.4 = - 1 5y9w,/2 

Y3,z = 35y6w,/4 

* Because of their length, Tables 2,3 ,4 ,6 ,8  and 9 are in the Appendix at the end of the review. 
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J. F. OGILVJE AND R. H. TIPPING 15 

which the aj  are assumed both to be independent and to be determined through fitting 
an experimental spectrum. 

VIBRATION-ROTATIONAL WAVEFUNCTIONS 

One can obtain the vibrational wavefunctions IG;(x), or more generally the 
vibration-rotational wavefunctions t+buJ(x) corresponding to the potential-energy 
function in equation (30), by following the method proposed by Herman et al. (1970) 
and extended by Tipping and Ogilvie (1976). Although we outline briefly this method 
for completeness, there are powerful alternative methods for deriving the physically 
meaningful matrix elements ofx directly (obviating the need for explicit wavefunctions) 
that are discussed in the following section. Even though the algebra becomes tedious 
quite rapidly with the addition of higher-order terms in the Dunham potential-energy 
function, the algorithm is quite simple and amenable to algebraic programming 
(Ogilvie, 1982). For this reason we outline only the essential steps here. 

In parallel with our discussion of the energy states in the preceding section, we first 
consider only the vibrational case, afterwards generalizing our results using the 
P-dependent potential-energy parameters. The first step of the method consists of a 
WKB-like transformation of the wavefunctions 

and 

resulting in a pair of coupled non-linear differential equations: 

y2(x ) -2dy (x ) /dx -4 [V(x ) -E , ] /B ,=O (40 ) 

and 

that are equivalent to the vibrational Schrodinger equation (20). 
We seek solutions in power series of the form 

m 

Y(x)= 1 bjd 
j= 0 

and 

for a given vibrational state labelled by u, in the following way. First we obtain the exact 
solution for the harmonic oscillator (V(x) =y-2Bex2 and E, = 2 y -  ‘B,(u + J)), for which 
y(x) = 2x/y and the g,(x) functions are proportional to the Hermite polynomials 
(Pauling and Wilson, 1935). Then in the first iteration we include one additional term in 
the potential energy, -alx3, while terms of order higher than a, (such as a:, a2 etc.) 
appearing in the (known) energies Eu are neglected. We concurrently truncate the 
series, equations (42) and (43) according to 

bj=O, j 2 3  (44 1 
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16 One-photon spectroscopy 

and 
cuj =o, j2v + 2; (45) 

then we determine the coefficients bj and cuj using the results of the previous iteration. 
We can continue this procedure, keeping one additional term in y ( x )  and g ( x )  each 
iteration, and thus generate accurate vibrational wavefunctions for the Dunham 
potential-energy function. Results for y ( x )  and g, (x)  up to terms of order a: inclusive for 
O< u < 4  (Tipping and Ogilvie*, 1976), and up to a: for O< v < 10 (Herman et al.,? 1970), 
have already been published. By means of methods of computer algebra, we have 
extended these results to include terms up to a: for y ( x )  and g,(x) ,  0 < v < 7. 

One can thus express vibrational matrix elements in terms of ground-state 
expectation values and the functions g, (x)  (Herman et al., 1970) 

the denominator of which contains the normalization factors. 

of eauation (46) is 
One can easily extend this procedure to include rotational effects. The generalization 

in which g,(XJ) is obtained by substituting the P-dependent potential-energy 
parameters y(P) and aj(@ from Table 3 into the expression for g,(x); the expectation 
values of x i  are obtained from those of x' by the same substitution. 

Finally, in order to express matrix elements off-diagonal in J in terms ofground-state 
expectation values, we define a normalized rotational function g J ( x )  according to 

~ O , J ( x J ) = g J ( x ) ~ ~ , O ( x )  (48 1 
This function, correct through terms of orders a: and y2P2,  is given in Table 6. The 
general vibration-rotational matrix element can then be written 

Explicit results and discussion of other methods of deriving matrix elements that do not 
involve wavefunctions are presented in the following section. 

* There are errors in the Table 2 of Tipping and Ogilvie (1976) that we here correct. The 
coefficient of u:u2 in the xo term of g3 should read + 1038165/128 instead of 26495613/256, and 
the coefficient of u2u3 should be + 7833/8 instead of 791718; also, in the coefficient of x2 in g3, the 
multiplicative factor of the u: terms should be 3y3/2 instead of 3y2/2, and the coefficient of u2u3 
should read 3387/4 instead of 3429/4. In g4 there are several corrections: in the coefficient of x, 
9329112 should be replaced by +55368, -831239164-t -584279124, 5617- +5467, and 
849+ +9633/2; in the coefficient of x3, +492913/8+ +328273/8, -38079/4+ - 36879/4, 
-225- -8160; in the coefficient of x5, -3378918- - 1732518, - 1803/5+ -4329110; in the 
coefficient of x', -29912- -201/2. 

t Corrections to g9 have been published by Tipping and Ogilvie (1976), in which there are still 
errors. In the coefficients of a:, the following changes apply: 43093833/16+43072393/16, 

and 1 16725311 6 - 1 16658311 6. 
-21023159116- - 21012439/16, 40767533/16+40746093/16, -4902361/16+ -4899681/16, 
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J .  F. OGILVIE AND R. H. TIPPING 17 

EXPECTATION VALUES AND MATRIX ELEMENTS FOR THE DUNHAM 
POTENTIAL-ENERGY FUNCTION 

For the comparison between theoretical and experimentally determined molecular 
properties (for instance rotational parameters B,, shielding factors (Kaiser, 1970), line 
intensities (Ogilvie et al., 1980, etc.), one requires accurate vibration-rotational 
expectation values (diagonal in v and J )  and matrix elements (off-diagonal in either, or 
both, u and J ) .  In this section we review published procedures for determining these 
quantities directly (obviating the need for explicit wavefunctions) and present new 
results accurate through terms of order a:. As with the Y,, discussed previously, more 
extensive results generated through use of computer algebra will be published 
elsewhere (Tipping and Ogilvie, 1983). 

We first consider vibrational expectation values of powers of the reduced 
displacement from equilibrium. One can directly generalize these results to vibrat- 
ion-rotational expectation values of x via the P-dependent potential-energy 
parameters. We next consider matrix elements of x’, viz. (vlx’lu’), that one can likewise 
generalize easily to include rotational effects. The latter matrix elements, (vJlxilu’J), 
would be required for interpreting, for instance, the intensities of Q-branches in electric 
quadrupole transitions, or in vibrational Raman spectra (Hamaguchi et al., 1981) if the 
isotropic polarizability were represented by an expansion : 

a ( x ) =  c UjX’. 
j = O  

Finally we consider the most general matrix elements, off-diagonal in J ,  that are 
applied in the following section to an analysis of vibration-rotational spectral 
intensities of HCl. 

Because of the iterative nature of the generating algorithm, one can in principle 
extend the results to arbitrary accuracy (within the Born-Oppenheimer approxima- 
tion); in practice, however, one needs only a few iterations in order to derive results the 
accuracy of which is limited only by that of the input data (spectroscopic parameters y 
and aj) .  

Expectation values 
Various methods have been proposed for the derivation of expectation values, for 
instance by Schlier (1961), Bonham and Su (1966), Herman and Short (1968,1970) and 
Swenson and Danforth (1972). One can determine the vibration-rotational expec- 
tation values directly in terms of the eigen-energies E,, by use of the Hellmann- 
Feynman theorem (Bonham and Su, 1966) or equivalently by a novel perturbational 
method (Herman and Short, 1968, 1970). By differentiating the energy expression for 
the Dunham potential energy, 

E,j=(vJI -B,d2/dxZ +y-’B,xZ(l + 1 ajxj)+BJ(l + X ) - ~ ~ O J )  

( o J ( x ~ + ~ ( v J ) = ~ ~ B ~ - ~  aEoJ/aaj ,  j=1 ,  2 . .  . 

(51) 
j =  1 

with respect to the parameters aj and y, one finds respectively 

(52)  
and 

One can obtain the expectation value of x in two ways: either the perturbational 
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18 One-photon spectroscopy 

method of Herman and Short (1968) 

( ~ ~ l x l ~ ~ ) = y ~ ~ , ~ { - ~ a , c o ,  ala(;o,+~, a / a ~ , - [ i ~ ~  -:a: +2a,] alas, - . . . 

- [+nu, - 3.1 a, + (n  + 3 )a, + 1 121 alas,} E", 

( u J ( ( l +  x)- 2(uJ) = B,  1 yk,l (u + 3)k, 

(54) 

(55 )  

or from the known Dunham result (Tipping and Ogilvie, 1976) 

k = O  

after expanding (1 + x ) - ~  and using the results in equations (52) and (53) above. 
An iterative scheme for generating expectation values of powers of x has been 

discussed previously (Herman et al., 1970; Tipping, 1973a; Tipping,and Ogilvie, 1976; 
Coquant, 1980). Essentially, one can deduce an exact recursion relation between 
different powers of x by using the commutator result (Tipping, 1973a) 

(ul[x'-' dldx, H ] l u ) = O  (56) 

in which H is the hamiltonian operator in equation (51). For the Dunham potential- 
energy function, equation (27), one obtains the expression 

[2(1- 1)E,yZ/Be](vlx'-2(u) + &[(l -  1) (1-2) ( I  -3)]y2(u/XJ-4Ju) 

=(u(x'{21+(21+ l)a1x+(21+2)a,x2+ . . (57) 

that one can iteratively solve in a manner similar to that used in determining y(x) or 
g,(x). The results can be expressed as a recursion relation 

in which the functionsf-. depend on I ,  0, y and a? Explicit results correct through terms 
of order a; have been published (Niay et al., 1979; Coquant, 1980). One can obtain the 
vibration-rotational expectation values (uJlx:luJ) directly from these results by 
substituting the B-dependent potential-energy parameters. 

Before concluding this discussion of expectation values, we wish to state two 
additional points. First, for u =0, one can obtain a simpler two-term recursion relation 
(Herman et al., 1970) in lieu of equation (58). In order to make equation (23) of Tipping 
and Ogilvie (1976) correct to terms of order a:, one has only to add the following 
expression : 

+y4{a:(601/8192 14+ 18817116384 l3  + 2242714096 1' +97155/16384 1 

- 103~1/8192)+u~u2(  - 34311024 l4 - 2097714096 l 3  -4895512048 1, - 10468314096 1 

+ 112471/2048)+a~a3(117/512 l4 + 17791512 l 3  + 83591512 12+9571/512 1-99131256) 

+u:u4(- 191128 14-573/256 13-335/32 12-3187/256 1+3239/128)+a~a~(189/512 l4 
+5599/1024 13+3159/128 12+25733/1024 1-28491/512)+a,a,a3(-391128 l4 
-5731128 13-2599/128 12-2827/128 l+3019/64)+a,a5(5/64 14+ 19/16 13+45/8 1' 

+467/64 1 - 227116) +a:( - 1/16 l4 - 2231256 l 3  - 4631128 1' - 7491256 1 + 957/128) 

+ a,a,(3/32 l4 + 85/64 l 3  + 185132 1' + 365164 1 - 413132) + a:(5/128 l4 + 731128 l 3  
+83/32 12+49/16 l-401/64)+a6(-1/32 14-15/32 13-35/16 12-45/16 1 

+ 11/2)}(o~X'-qo) (59) 
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J. F. OGILVIE AND R. H. TIPPING 19 

Second, for computing numerical values, one can treat equation (57) for 1 = 1,2, . . . N 
as a set of N linearly independent algebraic equations for the N unknown quantities 
(ulx'lu). Because of the rapidly decreasing magnitude of the elements as 1 increases, one 
can truncate each equation by setting (ulx'lu) = 0 for 1 > N and solving the resulting set 
of equations by, for instance, Cramer's rule. Results for u = 0 for the first few expectation 
values of HC1 as a function of N are listed in Table 7 along with the results obtained 
from equation (59) for comparison. The property of rapid convergence makes it 
possible to obtain moderate accuracy with a minimal effort, even with a hand 
calculator. 

TABLE 7. Expectation values of XI for HCl in u = O  from application of equations (57) and 
(59) 

N (01x'10)/10-2 (01x210)/10-3 (01x310)/10-4 (01x410)/10-5 

2 1.2456 3.5136 
3 1.26427 3.6886 0.59229 
4 1.26859 3.79221 1.66413 3.87999 
5 1.26871 3.79389 1.70665 4.33905 
6 1.26869 3.79424 1.71328 4.5 13 15 

Equation (59) 1.26881 3.79462 1.71374 4.51952 

Matrix elements off-diagonal in v 

For such matrix elements, one can derive a recursion relation analogous to 
equation (58) by considering the double commutation relation (Tipping, 1973b): 

( u ( [ Y ? ,  [Y?, x'lllu') = (E"- E " . ) 2 B , y U ( X q u ' )  

= - 2 4 -  ~ ) ( E , , + E , ) / B , ( u ~ x ' - ~ ~ u ' ) + ~ ~ ( ~ -  i)/B,(ulv(x)x 1-2 JV I ) 

+ 2I/B,(u~x'- dV(x)/dxlu') - 1(1- 1) (1-2) ( I -  3)(~lx'-~lu') (60) 
which, after substitution of the Dunham potential-energy function, yields the exact 
recursion result: 

(uIx'{[Z~ -(E,.-E,)2y2/4B~]+1(21+ 1 )~ ,~ /2+1(1+  l)a,x2+ . . . > I u ' )  
= 1(1- 1) ( E , , + E , ) y 2 ( ~ l ~ ' - 2 1 ~ ' ) / 2 B , +  1(1- 1) (1-2) ( I - ~ ) Y ~ ( V ~ X ' - ~ ~ U ' ) / ~  (61) 

One can solve this equation iteratively, finding again a four-term recursion relation : 

(62) 
in which the coefficients F - ,  depend on 1, u, u', y and a j ;  explicit results have also been 
published (Tipping, 1973b; Niay et al., 1979). Inspection of the form of equation (62) 
reveals that, in contradistinction to equation (58), one needs to know some matrix 
elements of small powers of x (depending on u' - u )  in order to generate elements of 
larger powers through equation (62). One can derive these 'initial elements' by several 
methods, such as use of the g, functions (Herman et al., 1970), through sum rules 
(Tipping, 1973b) or by perturbation methods (Bouanich and Brodbeck, 1974, 1975, 
1976; Bouanich, 1976). Results from all these methods have been published (Tipping 
and Ogilvie, 1976; Bouanich, 1977, 1978a,b; Niay et al., 1979). Again, all these results 
can be generalized to the elements (uJlx:lu'J) by substitution of the P-dependent 

( u J X ' J u ' ) = F ~ ~ ( u ~ x ' - ~ ~ u ' > +  * . . +F-,(uJx'-4Ju') 
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20 One-photon spectroscopy 

parameters. More accurate and extensive results will be published separately (Tipping 
and Ogilvie, 1983). 

Matrix elements off-diagonal in J 
The most general matrix elements (vJlx’lu’J’) can be derived by a method analogous 
to, but more complicated than, those discussed above. 

In particular, by considering the matrix relation (Tipping, 1973b) 

( u J I ~ P x ’  - 2 X x ’ Z ’  + X ‘ X ’ ~ ( V ’ J ’ )  = (EuTJ,  - E , J ) 2 ( ~ J l ~ 1 1 ~ ’ J ’ ) / B 2  

= -21(1- 1 )  (E, ,J ,  +E,,)(vJl~’-~l~’J’)/B,+41(1- l ) ( d l V ( x ) x ’ - 2  Iu’J’)/B, 
+2l(vJ~x’-’dl/(x)/dx~v’J’)/B,-1(1- 1 ) ( 1 - 2 )  (1-3) 

(uJlx’-4lv’J’) + 21(8 + P’)(vJl(l- l )x’ -2(  1 + x ) -  2 - x l -  ‘(1 + x ) -  3 p / )  

* (p’ - B )  (E”,J,  - E“J)( uJlx’( 1 + x ) -  + lg(x)lu’J’)/B, 

- r(p’ - p)2 (  v J J g ( x )  (1 + x )  -2lv’J’) (63) 
in which X and X‘  denote the hamiltonians containing the p- and B’-dependent 
potential-energy functions respectively, and 

g ( x ’ )  = x f - ’ ( 1  + x ) - ’  dx  (64) 

one can solve iteratively by treating the (small) rotational effects approximately 
(Tipping, 1973b; Niay, 1980). Alternatively, one can use the g ,  and gJ functions 
discussed in the previous section in order to rewrite the matrix elements in terms of 
expectation values, as in equation (49). For analysis of vibration-rotational intensities, 
we can conveniently express these results in the form 

(65) (vJlx’lv’J’) = (vOlx‘lv’0) +G,(v, v’, m )  

in which m = +(p’ - p). The rotational contributions are therefore given by 

u’, m ,  = (oolNo/Jgv(x -E(P))gJXfNv’p’gur(X -E(f l ’ ) )gJ‘ (X)  

- ~ “ O ~ ” ~ ~ ~ ~ ” ~ 0 ~ ” ~ ~ ~ ~ ~ ’ ~ ~ ~ ~  (66) 

in which the normalization factor Nos is defined to be 

= (ool{gJ(x)go(x -E(fl))}2100> - ”’. 
Representing the dipole-moment function (to be discussed in detail in the following 

section) as a power series: 
M ( x )  = C M,x’, (68 1 

1 

one can express the factors Fz’(rn) (Herman and Wallis, 1955) in the form: 

[~;‘(m)]’ /~ = ( V J I M ( X ) ~ V ’ J ’ ) / (  U O ~ M ( X ) ~ U ’ O )  

= C MI{ (uOlx’lv’0) + Gf(u, u’, m))/(vOlM(x)lu’O) 
f=o  

= 1 + 1 MfGf(v,  v’, rn)/(uO(M(x)lv’O) (69) 
f = O  

Squaring this expression and keeping only the terms linear and quadratic in m (the 
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accuracy of present experiments warrants no terms of higher order such as m3, etc.), one 
can write 

In order both to check the results published by Toth et  al. (1969a,b, 1970), Tipping and 
Herman (1970), Tipping and Forbes (1971), Tipping (1976), Bouanich (1977) and 
Ogilvie et al. (1980) and to derive new results for overtones higher than the 5 4  band, 
we have carried out the derivations of C: and DC correct to terms of order a:. The new 
results* appear in Tables 8 and 9, in which we have employed the following notation: 

E j  = y5’2J15Mj/2(olM(x)15) 

J j  = 3y3J5Mj/2(OJM(~))6) (71) 

The utility of these theoretical expressions for matrix elements and Herman-Wallis 
coefficients in an analysis of vibration-rotational line intensities is illustrated in the 
following section. 

DIPOLE-MOMENT FUNCTIONS 

In this section we discuss the nature of the dipole-moment function, the experimental 
and theoretical approaches to its determination, forms for its representation, and the 
principal method of its derivation from spectral intensities (in some detail); in 
conclusion we present some results for HC1 (Tipping and Ogilvie, 1982). 

Just as we can, within the Born-Oppenheimer approximation of the separation of 
electronic and nuclear motions, define a function for potential energy that expresses the 
manner in which the total energy of the molecule depends on the distance between the 
stationary nuclei, so we can also define a function for the dipole moment that expresses 
the manner in which the electric-dipole moment of the molecule, in a particular 
electronic state, depends on the instantaneous internuclear separation. In each case we 
assume that the distribution of electronic density is in equilibrium about the nuclei at 
that distance. The observed internuclear separation of a macroscopic collection of 
molecules in thermal equilibrium, as measured in a diffraction experiment for instance, 
depends on a Boltzmann average of the mean separation in each quantum state; 
analogously, the apparent electric-dipole moment, as obtained from (macroscopic) 
permittivity measurements, depends on a similar average over the occupied quantum 
states. On the microscopic level of an individual molecule, the electric-dipole moment 
has some ‘effective’ or expectation value in a particular quantum state, or alternatively 
a matrix element between two states. The derivation of a dipole-moment function 
therefore relies on an indirect extraction of the dependence on the separation from 
either experimental measurements or theoretical computations (or both). 

With regard to ab initio computations, the procedure is relatively direct, because the 
electric-dipole moment is a one-electron operator (Diercksen et  al., 1981). Thus the 
calculation of the molecular electronic wavefunction at a particular internuclear 
separation directly yields an electronic charge-density matrix from which the electronic 
contribution to the dipole moment is readily obtained. For molecular ions, because of 
experimental difficulties, this theoretical approach is an important method. As in 

* We note the following misprints and mistakes that have appeared in the literature: 

1. The coefficient of Y24na,az in equation (12) of Toth et a/. (1970) should read 12918, not 127/8. 
2. The coefficients of yZpna:, y2poa,a, and y2pla, in Table 3 of Tipping (1976) should read 

-63132, 315 and -6 respectively, not +63/32, 1/10 and -4518. 
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22 One-photon spectroscopy 

experimental methods, there are sources of error in theoretical computations also. 
These sources may be summarized (Green, 1974; Ogilvie et al., 1980) as due to coupling 
of electronic and nuclear motions, relativistic effects including spin-orbit coupling, 
incompleteness of the basis set, and electron correlation; in general each of these effects 
has an intrinsic dependence on internuclear separation, So that the resulting error is 
thus dependent on R. 

The equation of Clausius, Mossotti and Debye (Chelkowski, 1980) for molar 
polarization P, connects the measured relative permittivity E ,  as a function of 
temperature T with the mean molecular polarizability Cr and electric-dipole moment j: 

in which V, is the molar volume, k ,  the Boltzmann constant, N A  the Avogadro number, 
and E~ the permittivity of free space. Any attempt to deduce a temperature dependence 
of p 2  that can be related to an occupancy of molecular quantum states, and hence to a 
dependence on internuclear separation, meets with difficulties (Scher et al., 1982) not 
only because of the relatively large experimental inaccuracy associated with a 
measurement of the electric susceptibility (E ,  - l), but also because of the unknown, but 
not negligible, dependence of polarizability upon temperature. Therefore spectroscopic 
methods of measurement of dipole-moment quantities are essential if one seeks results 
of an accuracy approaching that of the potential-energy function. 

In order to discuss these spectroscopic methods, and by analogy with the Dunham 
function for potential energy, we use the customary representation of molecular 
electric-dipole moment M ( x )  as a function of reduced internuclear separation : 

M ( x ) =  Mjxj 
j = O  

The value of M ( x )  at x =O or R = R,, namely Mo, is called the permanent electric-dipole 
moment of the molecule. Because of the limited extent of experimental data, the power 
series has to be truncated at moderate values of j in practice. Hence the problem of 
determining the dipole-moment function is reduced to one of finding values of some 
coefficients Mi that correctly represent the behaviour within some finite range of x. 

Among the physical quantities most precisely measurable are frequencies of 
electromagnetic radiation. Use of the Stark effect, the shift of the frequency of light 
absorbed or emitted by a molecule in an applied electric field 2, permits us to relate 
these frequency shifts to some dipole-moment coefficients Mj. The frequency shift 
associated with the second-order Stark effect (proportional to c2) involves both 
expectation values of the dipole-moment function and the principal components of 
polarizability : all and u1 denote the components parallel and perpendicular, 
respectively, to the internuclear axis, and are related to the mean polarizability by 
8= (all +2c(,)/3.  If the energy terms are approximated by those for an harmonic 
oscillator and a non-rigid rotor, viz. E(u, J ,  M,) = o,(u + +)+ BJ(J  + 1) - 
D,[J(J+1)I2, in which M, is the quantum number denoting the component of 
rotational angular momentum about a space-fixed axis (parallel to a), then the 
expression for the Stark displacement (in energy units) of the energy levels in second- 
order, W!!frk(u, J ,  M,), consists of six terms (Charifi et al., 1978): 

D,pU,z JZ+J+M,Z-l 
25(5+ 1) (25- 1)  (25+3) B: (25- 1 )  ( 2 J + 3 )  

-~ 
J2 + J -  3M3 

Wgfrk(V, 5, M,) = 
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J. F. OGILVIE AND R. H. TIPPING 23 

D, J2+J+M;-1 1 Be 2 2 ( J 2 + J - M ~ ) - 1  -zpup (2J-1)(25+3)-%(<) (25-l)(25+3) 

(Stark effects of higher orders give rise to additional terms; Meerts et al., 1979.) The 
molecular coefficients in each term of equation (73) indicate their physical meaning; 
these are respectively the Stark effect of a rigid rotor interpreted as a polarization of the 
molecular rotation, the influence of centrifugal distortion on the rotational energy, an 
interference between the Stark effect of the rigid rotor and the centrifugal extension of 
the dipole, a polarization of the molecular vibration, and (the last two together) a 
polarization of the electronic motion. These coefficients of each term, in the same order, 
have approximate magnitudes (in units F m2) for HCl, as follows: 

p:/hcB,=6.32 x lop3*, 

p:D,/hcB:w3.17 x 

,u,pD,/hcB: rz 3.50 x 

p2De/4hcB: -p2(B,/o,)2/h~B,=9.65 x 

and 

For these estimates, we have used the approximations: p u s  ( v lM(x) (v )  - M,, p =  MI, 
D,-D,- - Yo,2, and B,-Be. The most important term is clearly the first, p:/hcB,; 
even the two polarizability terms are of greater magnitude than the remaining terms 
that involve the deviation from the rigid rotor model. Other coefficients Mj, l y  1, in 
higher orders of approximation would enter this equation as factors of (B,/o,Y , and 
would thus lead to even smaller corrections than those considered. Because the 
equation (73) may be rewritten (Charifi et al., 1978) 

E2P: W%.(U, 5, MJ)  = ~ 

( 5 2  + J - 3M3) 
hcB, )25(J + 1)  (25 - 1)  (25 + 3) 

in which the definitions of the 'effective polarizabilities' are 

and 

clearly one cannot determine independently the different parameters q, uL, p and p, 
simply by such measurements using the Stark effect. If, however, one can determine the 
component of polarizability by means of other measurements, such as the Rayleigh and 
Raman intensities, or the refractive index and the depolarization ratio (Bridge and 
Buckingham, 1966), then some estimate of p (=MI)  might be obtained. Kaiser (1970) 
observed no rotational dependence of p, in the case of HCI, but with improvement of 
techniques, such effects may be observable (Dyke and Muenter, 1973; Freund et al., 
1974; Tanaka and Tanaka, 1978). 
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24 One-photon spectroscopy 

For measurements on hyperfine transitions (for molecules with non-zero nuclear- 
quadrupole moments) through the Stark effect, the frequency shifts are directly 
proportional to the square of expectation values (uJIM(x)luJ) (Kaiser, 1970). In the 
vibration-rotational transitions, the frequency displacements due to the Stark effect 
are proportional to the differences of these same expectation values (uJ(M(x)luJ) for 
the different states of u (Gough et al., 1981). Even though all such frequency 
measurements can be made with relatively greater precision than intensities, because 
the coefficients Mi, j > 1, contribute only small corrections to these expectation values, 
the determination of these Mi becomes progressively more uncertain. 

Measurement of the radiative lifetime is another method of determination of the 
coefficients Mi, j > O .  The first such determination, by Bedding and Moran (1973), was 
for LiF in an experiment on a molecular beam in an electric-resonance spectrometer. 
To analyse the lifetime z1 ,o of the transition u = 1 + u  = 0, these workers used the 
expression 

in which A ,  ,o is the Einstein coefficient for spontaneous emission; the latter quantity 
was assumed proportional to the square of the dipole-moment coefficient MI. Little 
detailed information from overtones that would enable one to extract values of other 
coefficients M j  from such experiments is at present available. 

The principal, and currently the only feasible, experimental methods of determining 
Mj, j >  1 are from measurements of spectral intensities of pure rotational (Sanderson et 
al., 1971), vibrational, and vibration-rotational transitions. The measurement of the 
intensity of a particular transition (Pugh and Rao, 1976) yields a line strength S ,  the 
total (integrated) absorption of the line, that is proportional to the squared 
vibration-rotational matrix element I ( U J I M ( X ) ~ ’ J ’ ) ) ~ ;  this is the electric-dipole matrix 
element connecting the two vibration-rotational states, specified by quantum numbers 
uJ and u’J’ respectively, involved in the transition (u=u’ for the pure rotational case). 
The band strength, the sum of line strengths of all the rotational lines in the band, is 
proportional to the squared rotationless transition moment ~(uO(M(x)~u’O)~z .  Because 
of this squared dependence one cannot determine uniquely the signs of the coefficients 
Mj from only the rotationless matrix elements. If one however considers vibration-ro- 
tational interaction (i.e., individual line strengths), then one finds that the 
Herman-Wallis coefficients, C:’ and D:‘ in equation (70), depend linearly on the co- 
efficients Mi; this additional information enables one to make a specific choice of signs 
of Mj, j > O ,  relative to Mo. One can otherwise determine the absolute sign of Mo from 
measurements of the isotopic dependence of the rotational gyromagnetic ratio by 
means of the Zeeman effect (Townes et al., 1955). Measurements of the intensity of 
absorption of the lines in either the pure rotational spectrum or the fundamental 
vibration-rotational band (0’ = 1 t u  = 0) lead to determination of the sign of M,/Mo,  
for instance, through Dt or CA respectively; similar measurements in the overtone 
bands (u  > 1 t u  = 0) provide the signs of Mj/Mo, j >  1. Thus one can determine entirely 
from intensity measurements the coefficients M j  of the dipole-moment function M ( x )  
up to M, of which k is the value of Au, the largest change in vibrational quantum 
number of a transition for which intensity data are available. Because such intensity 
measurements do not have a particularly great relative accuracy, and because of effects 
of partial cancellation between terms, the higher coefficients Mk- I ,  M,, etc. in such a 
series are known with progressively less precision. In summary, it has therefore proved 
possible to determine the first few dipole-moment coefficients Mi, O<j<5 ,  for several 
molecules (Bernage and Niay, 1977) through use of not only thc , k effect but also, 
primarily, through intensities of vibration-rotational lines. 
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J .  F. OGILVIE AND R. H. TIPPING 25 

Although the representation of the dipole-moment function as a truncated 
polynomial, according to equation (68), is a convenient, flexible and economical model 
(in that about eight coefficients Mi, j < 8, can reproduce the intensities of some hundreds 
of lines in various bands of HC1, for instance), it possesses the familiar defect of such a 
representation, namely rapid divergence outside the particular range of x in which it is 
defined (from experimental data). Unlike the potential-energy function, the dipole- 
moment function has well defined values at both the limits of the united atom and the 
separated atoms; the limits are specifically zero if, as is the case for all known neutral 
diatomic molecules in their ground electronic states, the molecule dissociates into 
neutral atoms. The behaviour of the dipole-moment function near these limits is known 
as well (Goodisman, 1963). For molecules that dissociate either into atoms both of 
which are in S states, or into atoms both of which have total angular momentum less 
than h, then for sufficiently large separations the dipole moment should decrease in 
magnitude as R-' ;  for all other cases, the corresponding dependence is R-4.  As R+O, 
there is a dependence on R3 for a united atom in an S- or P-state, but R5 for a D- or 
F-state. Between these two limits there must exist at least one extremum if the dipole 
moment has somewhere a non-zero magnitude, but there may exist more than a single 
extremum. In the latter case, if the molecule changes polarity, there must exist one (or 
more) internuclear distance, 0 < R < XI ,  at which the dipole moment is zero. Clearly any 
general functional form that can incorporate all such features and still represent 
accurately the behaviour derived from experiment must be complicated. 

Because of the nature of these asymptotic behaviours and the known experimental 
derivatives of M ( x )  at x =0, a natural form to model the function would appear to be a 
ratio of truncated polynomials, a Pade approximant (King and Queen, 1979). These 
Pad6 functions have already been used for dipole-moment applications in a few cases 
(Herbelin and Emanual, 1974; Qrschner et al., 1977; Tipping and Chackerian, 1981; 
Ogilvie et al., 1980; Ogilvie and Hasan, 1981), but only in the latter two have both 
limiting conditions been imposed on its construction. The conversion of a function 
from a power series into a Pad6 form is straightforward (Kirschner et al., 1977), 
provided that the number of parameters in the latter exceeds the number of coefficients 
in the former. There still remains the task of finding the appropriate parameter to 
ensure an accurate asymptotic behaviour at R b Re. Because only limited information 
about the dipole-moment function for this region is currently available from 
experiment (Zemke and Stwalley, 1980), recourse has been made to data from quantum 
computations (Ogilvie et al., 1980; Tipping and Chackerian, 1981). Such ab initio 
results are however subject to error, as discussed above, and as confirmed by the lack of 
agreement between data derived from both theory and experiment in regions in which 
comparison is possible. Furthermore the method of combining the data from the two 
disparate sources tends to be arbitrary, so that, even if the data fitted at R %Re  were as 
accurate as those from experiment about R -Re, the resulting function could have only 
qualitative accuracy in the intervening region. Such a model is, however, more 
physically realistic than extrapolation of the obviously divergent polynomial function 
outside the range in which the latter has been determined. In the region 0 < R S 2RJ3, 
the accuracy of the dipole-moment function in Pad6 form is largely immaterial because 
such internuclear distances are accessible only at energies much greater than that of the 
dissociation limit; even the concept of a specific electronic state in this region is suspect. 
In summary, the Padi: approximant for dipole moment should ideally meet the 
following criteria: 

1. M(R)=O at R=O and as R+m. 
2. M(R)+O as R" for R+O, m depending on angular momentum state of united atom. 
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26 One-photon spectroscopy 

3. M(R)+O as R-" for R + w ,  n depending on the angular momentum states of the 

4. If M ( R )  changes sign, then M(R)=O at the point x = x o ;  otherwise xo= - 1. 
5. The function must fit adequately the data from experiment, and must have no 

Ogilvie and Hasan (1981) found that a function of the form 

separated atoms in the dissociation limit. 

additional roots or poles cn the real axis. 

/ m + n  \ 

M ( x ) = M , ( x +  (77) 

satisfied all these criteria in the cases tested so far. 
In order to illustrate our discussion of the extraction of the coefficients Mj from the 

experimental intensity data, we have performed a reanalysis of the data for HCl, using 
the improved potential-energy parameters given in Table 1, y = 7.083694 x 10- 3, and 
the recently published results from the measurements of intensity of the higher 
overtones by Gelfand et al. (1981). The rotationless matrix elements (OlM(x)lu) are 
listed in Table 10; the relative signs of the first five matrix elements have been 
determined from the Herman-Wallis factors of the fundamental and lower overtone 
bands, as described above (Ogilvie et al., 1980). We wish to determine the sign of 
<OIM(x)16) and to find the corresponding coefficients Mj, O<j<6, in the series 
expansion, equation (68). In order to accomplish this, we write the system of equations 

1 Mj(0lxjlu) = +<O(M(x)(u) ,  0 < ~ < 6 ,  (78) 
j = O  

and, using the known vibrational matrix elements of x j ,  solve for the two sets of Mj 
(denoted (+ ) and (- )), corresponding to the two choices of the sign of (OIM(x)(6). We 
list these sets also in Table 10. One can then use these sets of coefficients and the 
theoretical expressions in Table 8 and 9 to evaluate the C:(rn) and D:(rn) coefficients. 
The latter results are presented in Table 11 together with the experimental results. As 
one can conclude from this table, the set of coefficients labelled (+ ) yields the better 
agreement with the experimental data and is therefore preferred. Finally, one could use 
these coefficients Mi in order to construct a Pad6 approximant for the dipole-moment 
function that would embody the correct asymptotic behaviour and limits as discussed 

TABLE 10. Numerical values of rotationless matrix elements* and the corresponding 
coefficients Mj of the dipole-moment function for HCl given in both traditional 

(Debye) and SI (C m) units 

Experimental (OIM(x)lu) Mj( + 1 Mj( - 1 

U /lo- 30C m /Debye C m /Debye C m Debye 

0 3.69746 1.10847 3.64696 1.09333 3.64693 1.09333 
1 0.2375 7.12 x lo-' 4.0207 1 1.20538 4.02238 1.20588 
2 -0.02585 - 7.75 x 10- 0.12816 0.03842 0.13556 0.04064 
3 1.718 x 1 O - j  5.15 x 10-4 -4.96417 - 1.48822 -5.36288 - 1.60775 
4 - 1.022 x 10-4 -3.063 x -3.29608 -0.98814 -2.80164 -0.83991 

6 k2.205 x lo-' k6.61 x -3.12143 -0.93578 46.3994 - 13.9102 
5 -2.8iXio-5 - 8.42 x 10- - 2.16026 - 0.64763 12.603 1 3.77831 

* The sources of the experimental data for u i 4  are given in Ogilvie et al. (1980); otherwise the data are 
from Gelfand et al. (1981). 
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J. F. OGILVIE AND R. H. TIPPING 27 

TABLE 11. Experimental* and theoretical Herman-Wallis 
coefficients for HCI 

Experimental Theory 
(+) ( - )  

- 

- 2 . 6 0 ~  lo-’ 
4.5 x 10-4 

-8.6ox 10-3 
4.1 x 10-4 
1.70 x lo-’ 

2.77 x 

1.74 x 

3.35 x 10- 

- 

1.42 x 10- 

4.61 x 10-4 

7.99 x 10-4 

0 
1 . 1  x 1 0 - ~  

2.8 x 10-4 
- m X  1 0 - 3  

3.1 x 10-4 

3.7 10-4 

7.9 x 10-4 

1.4 x 10-3 

1.3 x 10-3 

-2.66 x lo-’ 

1.07 x lo-’  

1.20 x 10-2 

3.21 x lo-’  

4.99 x 

0 
1.1 x 

2.8 x 10-4 
-5.69x 10-3 

3.3 x 10-4 

4.8 x 10-4 

- 3 . 3 ~  10-3 

-2.66 x lo-’ 

1.09 x 

1.78 x 

3.99 x lo-’ 
1.8 x lo-’  

-4.27 x lo-’ 
- 1.1 x 10-2 

~ Not determined. 
* Sources of the experimental data are indicated in the footnote of Table 

10. 

above. This form of the dipole-moment function would consequently allow one to 
compute dipole matrix elements for any bound state with a much greater reliability 
than if one attempted to use the (divergent) series expansion. We will publish elsewhere 
the details of this analysis, also incorporating the results of the band u = 7 c u  =O. 

CONCLUSION 

Deviations from the Born-Oppenheimer approximation 

The theoretical discussions in the preceding sections are based, for the most part, on the 
Born-Oppenheimer separation of electronic and nuclear motions. For all but the most 
precise work, this approximation suffices, and one can directly relate the theoretical 
and experimental quantities, for instance Re. In addition, both the functions for 
potential energy and dipole moment are isotopically invariant within this approxima- 
tion. However, as already noted, small but systematic deviations have been observed 
for HCl (Kaiser, 1970; Bunker, 1973; Watson, 1973; Coxon and Ogilvie, 1982) and also 
for other molecules (Tipping and Herman, 1966; Bunker, 1968,1970,1972; Tiemann et 
al., 1982). In order to account for these effects, Herman and Asgharian (1966) derived 
an ‘effective’ radial Schrodinger equation that accounts for all deviations leading to 
changes in the energy levels of order m,/M, times the Born-Oppenheimer values : 

in which me and Mp are respectively the masses of the electron and proton, and MA is the 
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28 One-photon spectroscopy 

reduced atomic mass of the molecule. The quantity g , ( R )  is the rotational 
gyromagnetic function for the molecule, whereas g 2 ( R )  is an analogous function arising 
from vibrational electronic inertia. The potential-energy function V ( R )  is related to the 
Born-Oppenheimer quantity VBo(R) through 

V ( R ) =  VBo(R) -h2(<V,Z>/Ma + <V,2>/Mb)/2 + Erel(R) (80) 
in which the expectation values (over the ground electronic state) of the kinetic-energy 
operators of nuclei a and b constitute the ‘adiabatic’ correction (Kolos and Wolneiwicz, 
1964a,b); the relativistic contribution to the potential-energy function is denoted 
Erel(R).  (Bunker and Moss, 1977, later derived a similar ‘effective’ Schrodinger 
equation.) 

In principle one can solve these effective Schrodinger equations by means of the 
usual WKB method to obtain the energy values E,, correct to terms of order me/Mp 
times the Born-Oppenheimer result E t f .  Tipping and Herman (1966) carried out 
explicitly this procedure for the rotational parameter Be for H, and its isotopic 
variants, and expressed their result in the form 

/ ( 8 x 2 M A c R ~ )  

with 

The term proportional to g1 ( R e )  arises from the non-adiabatic corrections (admixture 
of excited electronic states) while the adiabatic (diagonal in the electronic state) and 
relativistic effects are contained within Re (equation 82). This value of Be is the proper 
one to compare with the experimental result 

ByP= Yo,, - A Y t , l  (83) 
in which the Dunham (1932b) corrections (arising from the higher-order WKB 
integrals) are denoted A Y t , l .  Similar analyses have been carried out for other 
spectroscopic parameters by Herman and Asgharian (1966) and Bunker (1970). 

By neglecting the (small) relativistic effects and all but the lowest-order Dunham 
corrections, and by noting that the remaining corrections are all of order m,/Mi times 
the Born-Oppenheimer value, one can write the approximate expression (Ross et al., 
1974; Bunker, 1977) in equation (12); this equation was in fact used for the analysis of 
wavenumber data of HCl (Coxon and Ogilvie, 1982). Watson (1980) introduced a 
formula slightly different from the latter, in which he replaced pi by a ‘charge-modified’ 
reduced mass pCLn defined by 

pc= Mb-cme)  (84) 
in which c is the charge number of the molecular ion; because c=O for a neutral 
molecule, this formula reduces to equation (13) in that case. 

From the above discussion one can deduce that the parameters Akl incorporate 
corrections to the Born-Oppenheimer energy coefficients Ykl arising both from 
adiabatic and non-adiabatic terms in the complete Schrodinger equation, and from 
higher-order WKB integrals (Dunham corrections). Except in the case of H, and its 
isotopic species (Tipping and Herman, 1966; Bunker, 1968), these corrections have 
been determined only empirically from the fitting of experimental data (frequencies of 
spectral lines). As the accuracy of frequency measurements continues to improve, to 
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include these corrections will become increasingly more important and the parameters 
more accurately determined (Guelachvili et a!., 1981 ; Coxon and Ogilvie, 1982; Lefloch 
and Rostas, 1982; Tiemann et al., 1982). 

Limitations of the standard Dunham formalism 
There are two interrelated problems concerning the validity of the Dunham formalism 
that have received considerable attention in the past: the applicability of the WKB 
method to the radial problem, and the significance of the pole arising from the nuclear 
Coulombic repulsion at  R=O. We consider these topics only briefly and refer the 
interested reader to more extensive discussions elsewhere. 

Although the WKB method was initially developed to treat one-dimensional 
problems (of range - 00 < R< a), Dunham (1932a,b) applied it to solve the radial 
Schrodinger equation (range 0 6 R < 00). Kramers (1926) found, however, that the 
first-order WKB solutions have the wrong nature at R = O ;  the correct behaviour could 
be obtained only if one replaced J ( J  + 1) in the effective potential energy by ( J  + 4)’. 
The subsequent work of Langer (1937) and Kemble (1937) supported this conclusion. 
However, Beckel and co-workers (Beckel and Nakhleh, 1963; Beckel et al., 1964; 
Engelke and Beckel, 1970) showed that the problems encountered at the origin ( R  =0) 
in the first WKB approximation disappeared when one included higher-order WKB 
integrals. Two final points on this topic are worth stating. 

1. Kilpatrick (1959) demonstrated that perturbation theory applied to the potential- 
energy function of the anharmonic oscillator, equation (5 ) ,  yielded precisely the 
same results as the WKB method. 

2. Hurley (1962) proved that the standard first-order numerical technique (RKR) for 
obtaining potential-energy functions from experimental data was entirely equiva- 
lent to the WKB method. 

Davies and Vanderslice (1966a,b) later proved that the turning points obtained with 
the higher approximations in the RKR method were identical to those derived by 
reverting the Dunham series for potential energy. These papers have assuaged any 
lingering doubts concerning the applicability of the WKB method to radial problems. 

Some concern has been voiced, however, regarding the range of applicability of the 
Dunham expansion, equation (5 ) ,  and by implication the entire formalism. Because of 
the existence of the pole at R = 0, the formal range of convergence is 0 < R < 2R, (Beckel 
and Engelke, 1968). Several authors (Simons et al., 1973; Thakkar, 1975; Beckel, 1976; 
Nalewajski and Parr, 1977; Mattera et al., 1980; Ogilvie, 1981) have proposed to alter 
the range of convergence by considering series in terms of variables other than x; 
Engelke (1978, 1979) has reviewed the merits and disadvantages of many of these 
alternatives, so repetition here of such discussion is unnecessary. Suffice it to say that 
none offers much improvement or convenience for representing the potential energy in 
the range accessible by conventional vibration-rotational spectroscopy. Some 
representations do, of course, lend themselves to more physically realistic extra- 
polations (Jordan et al., 1974; Jordan, 1975; Engelke, 1978; Hashemi-Attar and Beckel, 
1979; Beckel and Findley, 1980), especially to energies near the dissociation limit. 
However, in this region other methods are perhaps more valid (Le Roy, 1973). 

Limitations for determinations of dipole moments 
The limitations discussed above apply specifically to the Dunham potential-energy 
function and its corresponding spectroscopic term values. We would like to describe 
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some similar limitations and caveats concerning the dipole-moment function and 
spectral intensities. Like the corrections discussed previously, these refinements will 
become increasingly important as both experimental techniques and accuracy 
improve. Although there have appeared relatively numerous papers on the impli- 
cations of the breakdown of the Born-Oppenheimer approximation vis-d-vis the 
observation of dipole transitions in HD (see for instance Nelson and Tabisz (1982), 
Bishop and Cheung (1980) and references therein), few have been published on the 
analogous effects in heavier or polar molecules (Bunker, 1977). Kaiser (1970) 
attributed an isotopic effect for M, in HCI to the breakdown of the Born-Oppenheimer 
approximation. In order to determine the magnitude of this small deviation, one has to 
employ other data, for instance from the potential-energy function and spectral 
intensities for vibrational transitions, because the measured quantity is an expectation 
value of the dipole-moment function within a particular vibration-rotational state, not 
the permanent moment itself. For only a few molecules is sufficiently accurate 
information available for this type of analysis at present. 

Several other experimental factors may complicate the interpretation of spectral 
intensities. For instance, at sufficiently large densities, collision-induced absorption 
(Poll, 1980; Piollet-Marie1 et al., 1981) or interference effects (Tipping et al., 1978; 
Herman et al., 1979) may be important and have to be taken into account before 
theoretical and experimental values can be compared. 

If the rate of publication ofintensity data within the past few years indicates a general 
trend, then in the next few years one will witness a renaissance of accurate data on 
dipole-moment functions and other electronic properties of diatomic molecules. 

Before concluding this review, we wish to indicate briefly some recent innovations 
and trends in the spectroscopy of diatomic molecules. One should not construe this list 
as being exhaustive, but rather as being indicative of progress being made in a few 
directions. 

The first area of activity is in the production and measurements of free radicals; 
within recent years numerous experimental results on both frequencies and intensities 
have been reported (Herzberg, 1971; Huber and Herzberg, 1979). Because most of 
these radicals have electronic ground states other than 'C, concomitant progress in the 
theoretical description of the structure of these states has also been achieved. 

With the advent of the laser, state-selective excitation is now routinely practised 
(Jortner et al., 198 1). Radiative lifetimes and luminescence measurements will thus 
become an increasingly important source of information for both potential-energy and 
dipole-moment functions (Hirota, 1980). With these techniques, one is furthermore 
able to probe the states near the dissociation limit (Zemke and Stwalley, 1980; 
Carrington and Buttenshaw, 1981), in order to obtain information complementary to 
that derived from conventional absorption spectroscopy. 

The laser has also been used in conjunction with other standard experimental 
techniques, for instance, laser Stark spectroscopy (Allegrini et al., 1980) or laser 
magnetic resonance spectroscopy (Evenson et al., 1980), in order to increase both the 
sensitivity and the resolution. 

Another sphere of activity is the spectroscopy of simple diatomic ions (Wing et al., 
1976; Carrington and Buttenshaw, 1981; Bernath and Amano, 1982). These 
measurements provide data that are not only of fundamental importance but also of 
interest in the realm of astrophysics (Mallia, 1974). 

The final topic that we wish to mention is that of spectral line shapes. With the 
improvements in spectral resolution and the accuracy of frequency determinations now 
available, one is able to measure precisely changes in width, shift, and shape of 
individual spectral lines as a function of density, temperature and the nature of the 
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perturbing molecule (Guelachvili and Smith, 1978 ; Pine, 1980). The interpretation of 
these data that contain implicitly all the complications of intermolecular interactions 
will be a challenge to the theoretician. 
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36 One-photon spectroscopy 

APPENDIX 

This appendix contains Tables 2, 3, 4, 6, 8 and 9. 

TABLE 2. Coefficients for the rotational dependence of the reduced displacement 

h ,=1  
h 2 =  -3/2a, -3 
h, =9/2a: + 27/2a, - 2a2 + 15 
h, = - 135/8a: - 135/2a: + 15a,a2 - 117a, + 24a2 - 5/2a, - 91 
h5=567/8a':+2835/8a? - 189/2afa, +810a~-270ala2+45/2a,a3+ 1020a, + 12a~-240a2+75/2a,-3a4 

h,= -5103/16a: - 15309/8af+567a:a2- 10773/2a:+2268a:a2 -315/2a:a,- 17955/2a: - 168a,a: 
+612 

+3591a,a2 -945/2a,a,+63/2aIa,- 11955/2a, -252a: +35a,a,+ 2280a2 -855/2a,+ 54a4-7/2a, 
-4389 

hl=24057/16ay+ 168399/16a:- 13365/4afa2 +280665/8af- 17010a:a, +2025/2afa,+ 14345112af 
+ 1620a:a: -37422ata2 +8505/2a:a, -243a:a4+95634a: +4536a,a: -540a,a2a, -42504a,a2 
+6930a,a3 -756ala4+42a,as + 79695a, -96a: f3696a: 
-840a2a,+48a,a,-21252a2+25aZ,+8855/2a,-693a,+ 147/2a, -4a,+32890 

TABLE 3. Rotational dependence of potential-energy parameters 

fo( / l )  = (1 - y 2 p +  y4j2(a, + 3 ) + y 6 B 3 (  - 9/4a: - 9a1 + az  - 13))y2j 
y ( p ) = y  -3/2y3j(al + l)+3/8y5fi2(15a: + 30a, -8a2 + 25)+ 1/16y7P3( -405a: - 1215a: +408a,a2 

- 1665a1 + 504a, - 80a, - 1095) 

+y6p3(  - 135/2a:-405/2a: + 150a:a2 -324af +288a1a, -70a,a3 -363a, - 32a: + 204a2 -90a3 
+ 20a, - 264) 

a2(fl)=a2 +y2b(- 3a1a2 -3a2 + 5a, + S ) +  3y4p2(9/2a:a2 +gala2 - 1~/2a ,a ,  - 5a1 -2a: + l a 2  - IOa, + 5a, 
- 15)+ y6b3( - 135/2a:a, -405/2a:a2 + 225/2a:a,+ 135J2a: +60a,a$ -270a1a2 + 270a1a, 
-90a,a,+270al + 72a: - 50a2a3 - 195a2+ 225a,- 135a,+ 35a, + 390) 

+ 20) + y6D3 ( - 135/2a:a, - 405J2a:a + 13 5a:a, - 8 1 a: + 60a a2a3 - 270a + 324a , a,  - 126a a, 
-351a, +72a2a,-48a2a,+ 36a2 - 10a:- 115a3+270a,- 189as + 56ab - 546) 

a4(j)  = a4 + y2b(- 3a1a4 - 3a, + 7a, + 7 j + y4pZ(27/2a:a, + 27a,a, - 63/2ala, - 21a1 - 6a2a4 + 21a, -42a, 
+ 28a, - 77)+ y 6 p 3 (  - 135/2afa4 -405/2a:a, + 315/2a:a, + 189/2a: + 60ala,a, - 270a1a, 
+378ala, - 168a,a6+441al + 72a2a4- 56a2a, -42a2 -20a,a4- 165a, +315a, -252a, + 84a, 
+735) 

a,(/l)=a, +y2b( -3a,a, -3a, +8a, - 8)+3y4b2(9/2a;a5 +9a1a, - 12a,a, + 8al -2a2a, +7a, - 16a, 
+12a7+32)+y6B3(- 135/2a~a,-405/2a~as+ 180afa, - 108a~+60a,a2a,-270a,a,+432alab 
-216alal-540al +12aza,-64a2a6+48a2- lOa,a,- 165u,+360a6-324a1+ 120a8-960) 

+ 15a8 - 39) + y 6 B 3 (  - 135/2a:a6 -405/2a:ab + 405/2a:a, + 243/2a: + 60ala2a6 - 210a,a, 
+486a1a1 -270a,a8 +648a1 +72a2ab -72a2a, - 54a2 - 10a3a, + 155a, - 155ab+405a7 -405a8 
+ 1224) 

a,(p)=a, + y 2 p (  -3af -3a1 +4a2 -4)+y4b2(27/2a: +27a: -24a1a2 + 33a1 -24a2 + 10a3 + 32) 

aa(b)=a3  + 3y2B( -a1a3 -a3+2a4-2)+ 3y4P2(9/2a:a,+9a,a, -9a1a4 +6a, -2a2a, +7a, - 12a4+7a, 

ab( j )=ab  +3y2b( -alab -ab + 3a7 + 3)+3y4j2(9/2a:a6 +gala6 -27/2a,a7 -9a, -2a2a6 +7ab - 18a7 
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TABLE 4. Energy coefficients Y,, previously unpublished 

Y,,,=512B:3/co:Z(729a:+5103a;'- 1296a:a,+ 16632a~-6048a:a,+360a:a,+31878a~+384a1a~ 
- 11088a,a, + 1260a1a, -72a,a4+ 36432a, + 672a: -80a2a, -8096~1, + 1 3 2 0 ~ ~  - 144a4+8a5 
+ 20240) 

Yo,8 =256B25fw:4(-24057af- 192456a:+53460a:az -729000a:+311040a~a, - 16200a?a3- 1684800a: 
-25920a:a: +777600a:a, -17760a:a3+ 3888a:a4-2527200a: -82944a,a:+ 8640a,a,a, 
+998400a,a2- 144000a,a,+ 13824ala4-672ala,-2358720a, + 1536a;-76800ai+ 15360a,a, 
- 768a,a4 + 561600~1, -400a: - 104000a, + 14400a4 - 1 3 4 4 ~ ~  + 64a, - 1085160) 

Y ,  ,6 = 4B:'/w:'( - 1066527af - 63991624 + 2973672ata2 - 18804555a; + 1335 1392a:a, - 1213920a:a3 
- 35175060a: - 1816128a:a: +26753328a:a, -4665600a:a3+409536a:a,-45050985a: 
-4613760a,a: +817920alaza3+28838880ala2 - 7218720a,a,+ 1213056a,a4- 102144a1a5 
-38366298a, + 136704a: -3538368a:+ 1198080a,a3- 102912a2a,+ 14421960a, - 51200a: 
-4584000a,+ 1104192a4- 177408a5+ 14336a6 - 17457693) 

TABLE 6. Pre-exponential factor g J  of rotational wavefunction 

1 +yP[x -(al + 3)xZ/4+ (a38  +al/4-a,/6 +2/3)x3 + (- 5a:/64-9a:/64+ 3a,a2/16-a,/4+3a,/16 g J  = 

-a3/8 - 5f8)x4  + (7a:f 128 + 3a:f32 - 3a:a,/l6 + 3a:/20- 9ala,/40 + 3ala,/20 +a,/4+ 3a:/40 -a,/5 
+3a,/20-a4/10f3/5)x5+(-21a~/5I2-35a~/5I2+35a~a,/192-5a~/48+ 15a:a2/64-5a:a3/32 
- 5a:/32- 5a1a:/32+ a,a,/4 - 3a,a3/16+ a,a4/8 - a1/4 - 3a:/32+ a,aJ8 + 5a2/24 -a,/6 + a4/8 
- 4 2  - 1/12)x6 t (33af/1024 + 27a:/512 -45ata1256 + 5a;/64 - 15a:a2/64+ 5a:a3/32 +25a:/224 
+ 15a:a:/64- 15a:a,/56+45a:a3/224- 15a~a4/112+9a~/56+45a,a:/224- 15a,a2a,/56 - I5a1a,/56 
+3a,a3/14-9ala4/56t3a,a5/28+a,/4- 5a2/112+3a:128 -9a2a3156+ 3a,a4/28 - 3aZ/14+3ay56 
+ 5a3/28 -aJl  f3a5/28 -a6/14+4/7)x'] +y2P[(7a, + 3)/8 + (11a:/16 +3a1/2- 5a2/4+2)x 
+ (-29a:/32-21a:/16+ lala,/4-lal/4+9a,/8 - 1a3f8 - 15/8)x2+ (213af/256+ 39a:/32 
-17a:a,/32+ 13a38 -9a,a,/4+ 3a,a3/2+ 15a,/8 + 13ai/16 -3a,/2+a3-3a4/4+2)x3 
+ (- 403a3512 -2974256 + 391a:a,/128 - 99a:/64 +423a:a,f I28 - 279a:a3/128 -235a:/128 
-9ala:/4+41a,a,/16 - 33a,a,/16 + 1 la,a4/8 - 33a,/16 - 33a:/32 +4la,aJ32 + 55a2/32 - 1 la3/8 
+ 15a4/16- 1 la5/16-35/16)x4+ (1549a:/2048 + 5734 1512- 1889a:a/512+ 191a?/128 -69a:a2/16 
+91a:a3/32+ 115a:/64+ 555a~a~/I28-69a~a2/16+99a:a,/32 -327a:a4/160+ 33a:/16+99ula:/32 
- 2 la, a,a,/5 - 5% a2/16 + 1 la , aJ4 - 39a ad20 + t3a la ,110 + 9 la J40 - 23a:/32 + 1 lai/8 
- 39aza3 f20+ lla,a4/8 - 39a,/20+ lla</16 + 13a3/8 - 13a4/10+ 9a,/10 - 13a6/20 + 12/5)x5] 
+ y2P2[x2/2 - (a, + 3)x3/4+ (5a:/32+ 7a,/16 -a,/6 +91/96)x4 + (-  7a:/64 - 19a:/64+ 1 la,a,/48 
-29a,/48+ 5a2/16 -a,/8 -9/8)x5 + (21~;/256+7a~/32-49a:a,/192+ 1661a:/3840- 109a,a2/240 
+29ala3/160+ 73a1/96 f 4a:/45 - 1301a,/2880+ 39a3/160 -a4/10+ 185911440)~~ + (-  33a:/5I2 
-87at/512+ 11a~a2/64-423a~/1280+21a~az/40-67u~a3/320- 181a~/320-33a,a~/160 
+ 131a,a2/192 - 59a,a3/160+ 3ala4/20-437al/480 - 290:/160 + 7a2a,/48 + 47a,/80- 29a3/80+ a4/5 
-a,/12 - 29120)~' + (429af18192 + 561a:/4096 - 275a~a,/1024+ 10793aff40960- 1437a:a2/2560 
+ 573a:a3/2560+ 7951a~/11920+ 849a:a:/2560 - 29053a:nz/35840+ 7863a:a3/17920- 199a:a4/1120 
+ 12491a: f I7920+ 3897a1a:/8960 - 1557a,a,a3/4480 -4091ala,/4480 + 3799a,a3f6720- 87ala4/280 
+43a,a5f336+ 169a,/160-2a~/35+2993a~/10152- 1357a,a3/4480+ 13a,a4f105-9691a,/13440 
+ 55a:/896+ 1079aJ2240- 1019ad3360+ 19a5/112-a,/14+ 7187/4480)x8] 
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38 One-photon spectroscopy 

TABLE 8. Theoretical expressions for the Herman-Wallis coefficients C: (correction term)* 
andC,6 (leading contribution), previously unpublished 

c"~{. . .} + Y ~ ( E ~ (  - 1935a712048 + 585a:/32 -2211a:a2/512 -291a:/4 + 9a:a2/16 -331a:a3/64 +285a:/4 
+ 891a:a:/128 +441a:a2/4+ 51a:a3/16 + 3a:a4/160+ 111a:/4 - 171a,a$/4 + 629a,a2a,/80 - 165a,a2 
-69a,a3/4+ 27a,a4/40+ 3a1a,/10- 63a,/5 + 51a332 + 21a: + 3a2a3/10 + 9a,a4/8 + 99a2/5 - 23a:/12 
+&a,- 153aJ10+21aJ5-1a,/5- 168/5)+~,(-1851a~/256+22143a~~256-217a~a,/32 
-6119a:/80 - 21813a:a2/160 - 111a:a3/20- 95la:/32+ 6343a,a$/80 + 3503a,a2/20+ 213la1a,/160 
+ 111a,a4/80+54al/5-549a~/16+65a2a,/24- 145a2/8- 160a,/3+285a4/16- 10a5+35) 
+ E ~ (  -4389a://32 + 236la:/32 + 313aia2/2+ 131a:/5 - 8961a,a2/40 -991a,a3/4Q - 21a1/4 
+ 551a:/10 +62a2/5 + 537a3/10- 531aJ2Q - 18615) +E,(  -4515a:/32 - 2475a:/32 + 2361a,a2/8 
- 15a1/2 - 219a2/8 - 295a3/4+ 16514) + c4(135a:/4 - 60a, +49a2 - 52)+~,(15a,/2+45/2) - ~OE,} 

y{6,( - af/256 + 35a3256 - 5a:a,/96 - la$6 + 21ata2/32 - a:a,/8 + 15a:/4- a,a?/l6 -2a,a2 
+5ala3/8-3a,a4/20- 5a, + 3a$/16-a2a3/15+ 5a2/3 -2a,/3 +aJ4-a5/15 +1/3)+6,(- 15af/64 
+ 45a:/32 - 5a:a2/4 - 41a:/l0 + 101a, a2/40 - 21a, a,/20 + 21a,/4 - 23a$/60 - 28a@ + 9a3/10 
-3aJ5 - 1215) +6,( - 35a:/l6 f lla:/16 - 49a,a,/12 - 11a,/3 +9a2/4 -3a3/2 + 512) +a,( - la: 
+ 13a,/2- 10a2/3 - 8/3)+6,( -9a, + 3)-46,} 

Cg = 

* The leading contribution to C;, with a factor of y, has been given by Ogilvie et al. (1980). 

TABLE 9. Theoretical expression for the Herman-Wallis coefficient D,6 

"= {C;/2}' + y2{6,(5a?/64 - 25a316 + 5a:a2/12 + 4051a:/480 - 113ala2/60+9a,a,/20 - 191a,/12 
+ 23a:/180 + 1429a2/360 -21a3/20+ a415 + 1859/180)+ 6,( - 11j"a: + a:]/512 - 75a:a2/32 - 15a:/64 
-- 165a:a2/64- 131a:a3/32+65a:/32-21a:a:/32- 15a:a2/8 - 81a:a3/16-99a:aJ40-15a:/8 
- 81ala:/32 + 1 11a,a2aJ40+ 35a,a2/8 - 3a,a, - 189a,a4/40+ 33a1a,/20+ 691a,/40+ 3a:/4 - 3a:/4 
- 21a,a,/10+3a2a4-41a,/10 + a: +2a3 -9a4/5 - 3a5/2+ 8a,/5 - 53/5)+ a,( - 1149a:/256 
- 1 155a?f256 -417a:a2/32 - 35a:/8 - 561a:a2/32 -93afa,/16 + 189a:/16 + 1 lla,a:/16 - 21a,a2/2 
- 105a1aJ8 +93a,aJ20 - 19a1- 63a316 + 183a2a3/20+ 11a2/12 - 5a3 - 15a4/4+ 39a,/10 + 133112) 
+ a3(- 2919a:/128 - 189a:/8 - 105a:a2/16 - 21af - 63a,a2/2 +45a,a,/4+ 23a, + 105a:/8 - 12a2 
- 15[a, -a4]/2- 12)+6,(- 161a:/4- 189a:/4+ 33a,a2 -36a, - 15a2+ 14a,+ 14)+6,( - 15a: 
- 15a,/2 + 30a, - 20)+6,(21a, -9)+ 146,) 
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